另一方面,更严峻的挑战体现在算力技术创新仍有待进一步提升。华为技术有限公司轮值董事长徐直军在2023世界计算大会开幕论坛上表示,“只有解决好服务器、操作系统、数据库这些本源问题,我们才能真正持续地提供算力,这是我国计算产业应该优先解决的问题。”
在本次大会上,就如何加快筑牢智能算力基础设施底座,提高智能算力产业安全可持续发展,多位专家提出,中国还需在顶层制度、基础设施、创新生态和人才培养四方面持续发力。
在顶层制度方面,中国工程院院士倪光南表示,未来,我国应重视标准建设。例如可以发布“算力中心建设指南”,提出算力、存力、运力的适当比率范围,对于运力可以提出应具备的参数指标等要求,与算力实现均衡部署和均衡发展。
工业和信息化部总工程师赵志国也表示,未来将继续强化政策保障,优化计算产业发展环境。例如加大对重点领域和薄弱环节的支持力度,建设完善计算标准和测评体系,加强知识产权布局,增强核心竞争力。
在基础设施方面,多位专家建议应科学布局基础设施,适当超前布局,科学有序、绿色集约地推进算力设施建设。
“在推动智算中心建设从东部、中部逐渐向西部拓展的同时,加大全国层面的统筹力度,破解算力市场和服务市场碎片化情况,融入全国统一大市场建设。”陈晓红说。
在创新生态方面,应整合国内分散的优势力量,加强产学研联合攻关。中国工业经济学会会长、中国社会科学院大学教授江小涓表示,以前有大企业自己封闭起来做研究。到了数字时代,边界开放的产业机制组织方式将成为主流,开放科学将成为科学发现的重要组织方式。
在联合创新的产业生态中,江小涓进一步强调,当下,要注重企业的创新主体地位。
这一观点从一组数据中可以得到印证,国家知识产权局发布的《2022年中国专利调查报告》显示,2022年我国企业发明专利产业化率为48.1%,高于科研单位和高校发明专利的产业化率。这是因为,“企业在一线,他们能快速感知社会需求。”江小涓说。
在人才培养方面,去年,百度联合浙江大学中国科教战略研究院发布的《中国人工智能人才培养白皮书》显示,国内人工智能领域人才总缺口达500万。这意味着算力方面的人才缺口也比较大,迫切需要提高具备数学基础、数理逻辑、计算能力的人才培养力度。
对此,陈晓红建议,应坚持系统观念,通过走有组织、体系化、强联合之路,统筹推进高校、高能级科创平台、产业、社会四大系统的协同创新,形成算力人才培养的倍增效应;打造集产业生态、标准制定、实验验证、系统研制、理论研究为一体的创新机制,更好培养算力拔尖人才。
此外,算力人才的培养本身也需要有数智化教育平台的赋能。陈晓红说:“应积极打造校校之间、校企之间、教与学之间、人与人之间联系更加紧密的数智教育平台,聚集智能算网资源,助力算力人才培养。具体来看,高校有待开设算力方面的专业,抓紧编写相关教材,提高我国算力人才自主培养质量。”